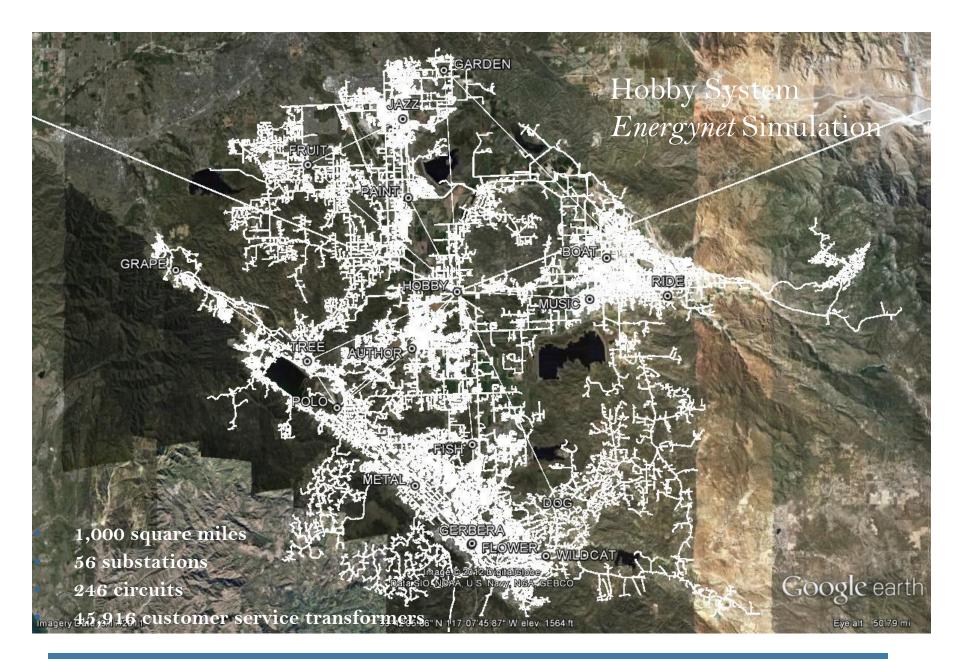
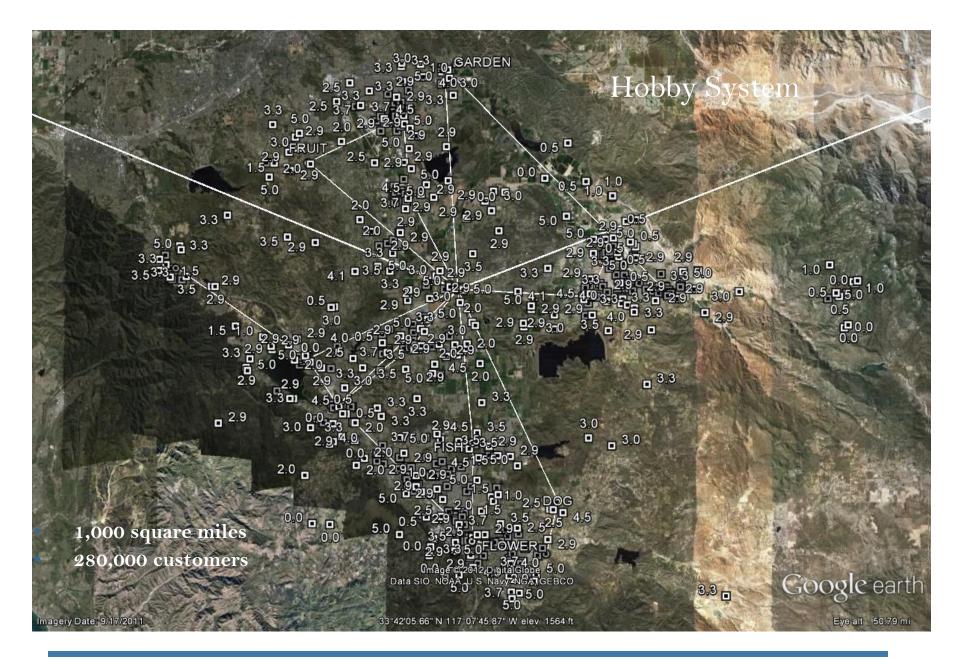
Maine Smart Grid Coordinator NTA Identification, Assessment, and Management

New Power Technologies *Energynet*[®] **Overview**

July, 2014


Top Level

- **DER** ability to improve grid performance is well-established.
- Not all DER is grid-beneficial. Grid-beneficial DER is location and attribute-specific.
- Tools and techniques to rigorously identify grid-beneficial DER are proven.


Nomenclature

- DER (distributed energy resources):
 - Distributed generation
 - Demand response
 - Storage
 - Close to load
- Grid (power delivery network):
 - Bulk electric system
 - Local transmission and sub-transmission
 - Distribution
 - Substations and components
 - Loads and resources
- Grid performance improvement:
 - Overload relief
 - Voltage violation relief
 - Reliability improvement (fewer, shorter outages)
 - Loss reduction
 - Power quality improvement
 - Direct, demonstrable, quantifiable

Energynet[®]

Energynet®

Energynet®

Energynet Platform

- Unified wide-area network model incorporating regional transmission, substations, distribution feeders
 - Allows direct representation of individual distributed generation, storage, loads, etc.
- Derived with software from existing legacy power system data
- Visualization, simulation and analytics
- Integrated GIS, field sensing/monitoring, customer metering, market data
- Web-based application platform

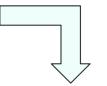
Why?

- Visibility into grid conditions anywhere under any operating condition
- Accurate network representation of individual DER
- Direct observation of network interaction of DER impacts and benefits

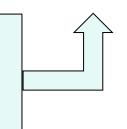
Applications and Solutions

• **DG** interconnection

- One-click evaluation
- Regional low-impact site inventory
- Regional impacts of intensive PV development
- EV charging
 - Network headroom, cluster identification
 - Managed charging impact minimizing/value maximizing


• Grid benefits of DG, DR, storage

- network expansion project assessment
- High-value DER identification
- Identify DER that can offset otherwise necessary network expansion projects at lower cost
- Regional reliability risk assessment
- Low-cost CVR opportunities
- Wide-area situational awareness with legacy sensors and monitors


Nomenclature

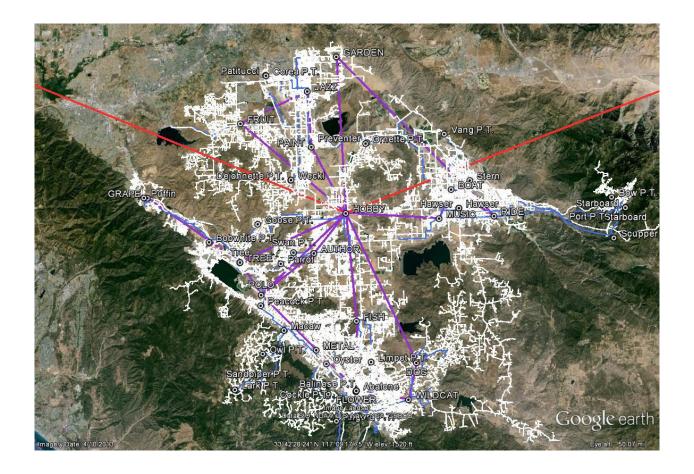
- DER (distributed energy resources):
 - Distributed generation
 - **– Demand response**
 - Storage
 - Close to load

NTA

- Grid (power delivery network):
 - Bulk electric system
 - Local transmission and sub-transmission
 - Distribution
 - Substations and components
 - Loads and resources
- Grid performance improvement:
 - Overload relief
 - Voltage violation relief
 - Reliability improvement (fewer, shorter outages)
 - Loss reduction
 - Power quality improvement
 - Direct, demonstrable, quantifiable

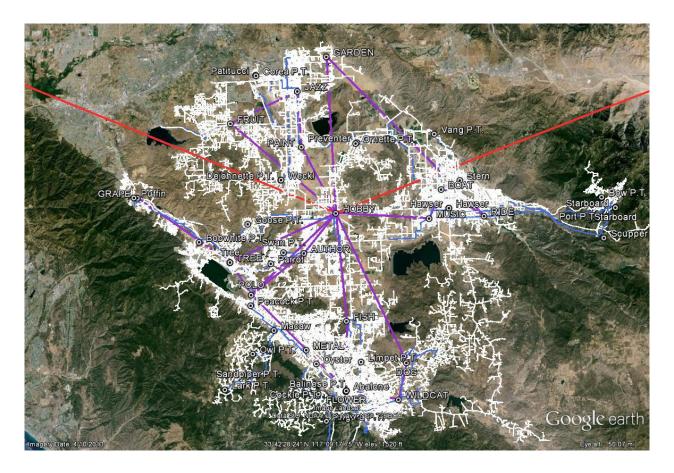
UPGRADE

NTA Attributes


- Offset network load or mitigate voltage violation on...
- identified assets of CMP's existing transmission system under...
- peak-period electric loading and contingency conditions.
- > Direct relationship between NTA and grid benefits
- Benefit-specific, location-specific, time/operating condition-specific
- Aggregate capacity/size-specific

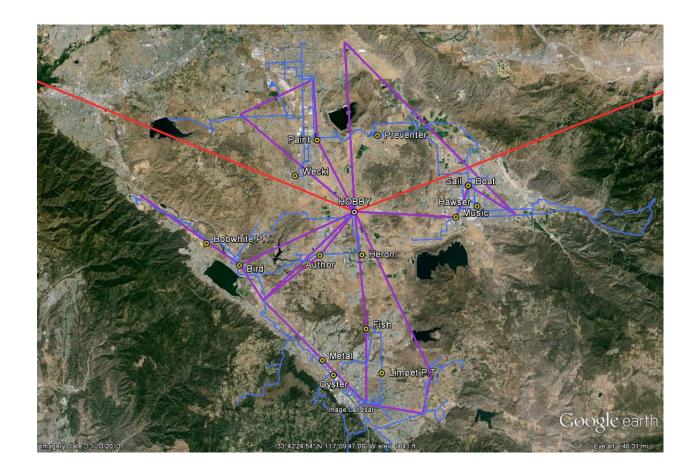
Potential DER Benefits as NTAs

- Load Relief
 - Reduce or offset downstream load to avoid a known or projected thermal overload of power network equipment that would otherwise require a network upgrade.
- Reliability Improvement
 - Reduce loading-related network component failure rate
 - Increase post-contingency load-shift opportunities by increasing network headroom
- Voltage Violation Relief/CVR Opportunity/Power Quality Improvement/ Improved Voltage Security
- Loss Reduction
- Incremental Energy, Bulk Capacity, Reserve Capacity, or AS Capacity
- Low-emission/Renewable/Low-carbon Energy or RECs
- Customer Benefits/Societal Benefits
- If you can't measure it and value it, it's not a real benefit.


"Hobby" System Energynet Optimal DER Portfolio

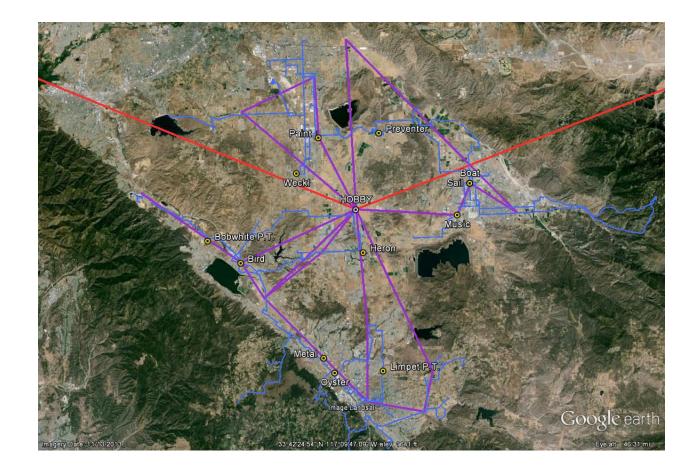
• Hypothetical DER projects analytically selected for maximum grid benefits, including overload relief and reliability improvement

Energynet[®]

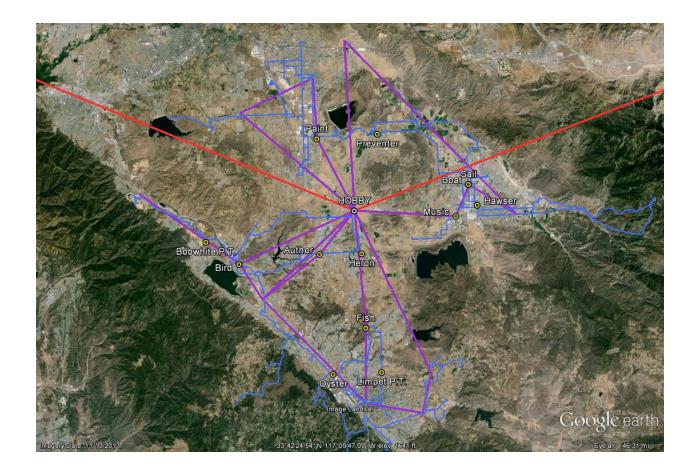

"Hobby" System

- 500 kV 33 kV
- 115 kV White: 12kV and lower

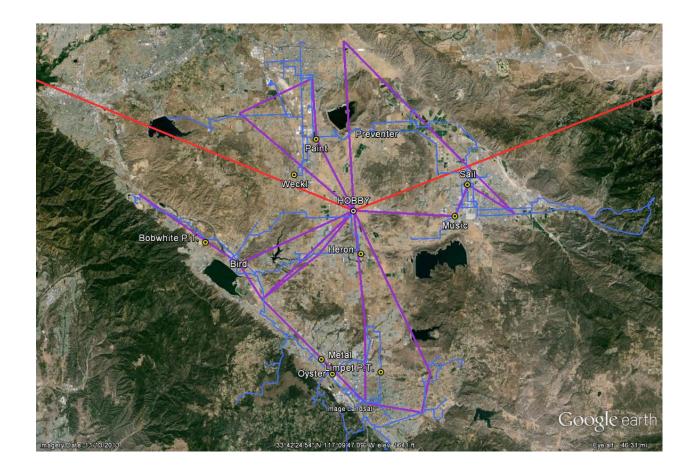
Energynet[®]


Future Case Capacity-Constrained Substations

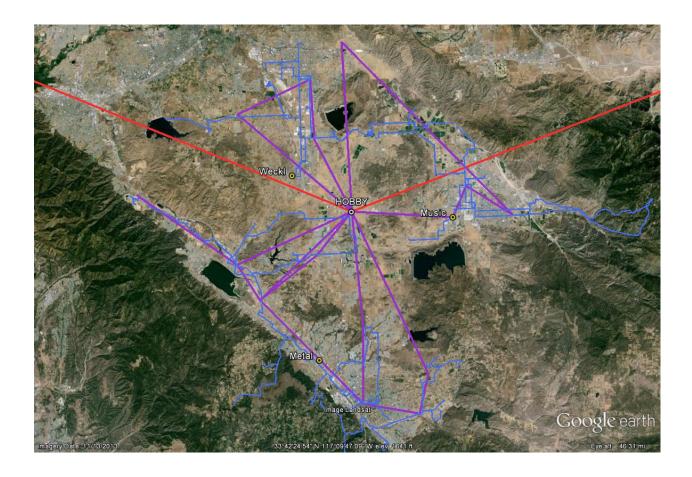
• Sustained normal-condition loading exceeding normal rating identified in Energynet simulation (*analogous* to needs assessment)


Energynet[®]

Substations with Proposed Upgrades

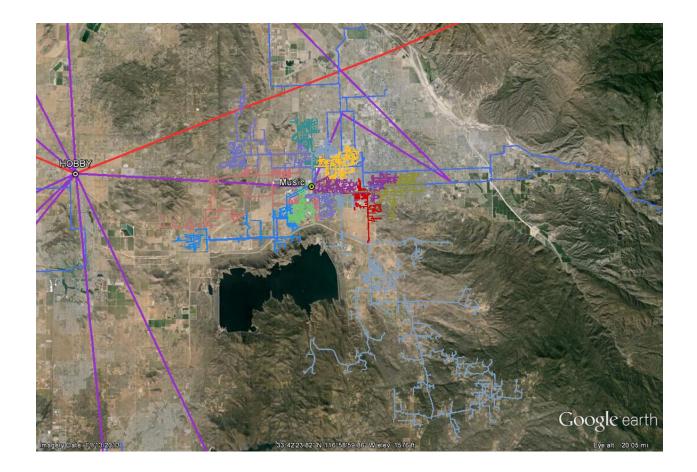

• Transformer additions, voltage uprates, new substations

Constrained Substations after Load Rolls


Energynet[®]

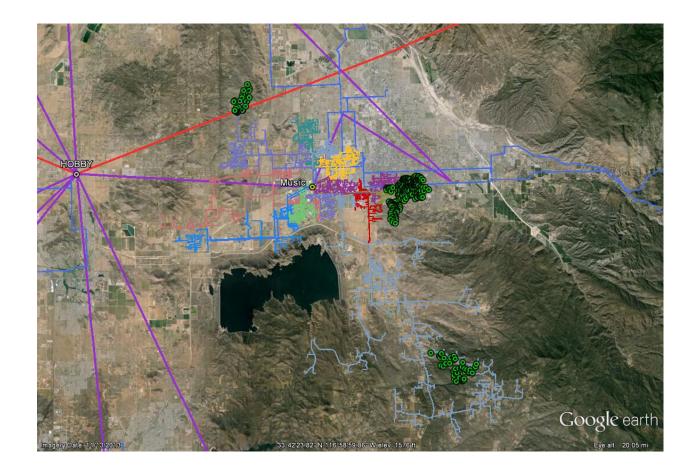
Substations with Constraints Resolved by Upgrades

Substations with Constraints Resolved by DER*

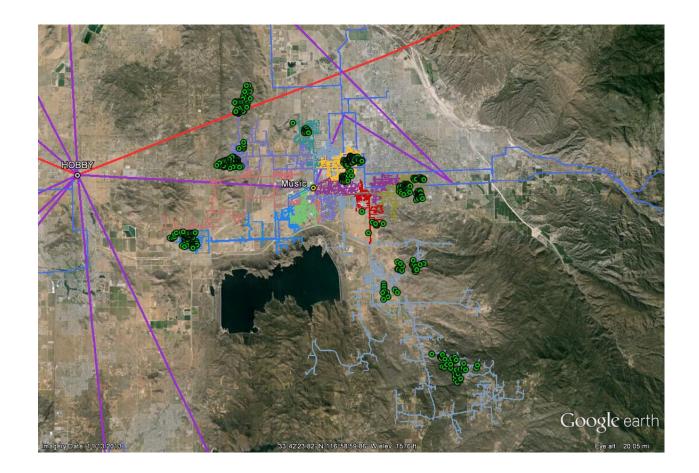

- Hypothetical DER identified primarily for voltage and loss benefits.
- Low-penetration DG.

Music Substation Constraint

- 27.9 MVA transformer
- 39.5 MVA projected peak load
- 29%, 11.6 MVA overload
- transformer bank addition planned
- - 6.2 MVA from load roll


Music Substation and Feeders

• 115/12 kV substation; 14 feeders



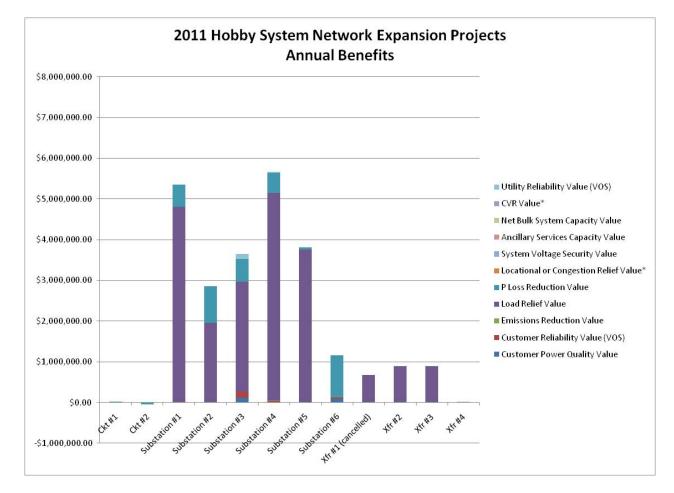
Music Substation DR

• Bias toward electrically remote, smaller sites

Music Substation DG

• Bias toward electrically remote, smaller sites, smaller DG projects

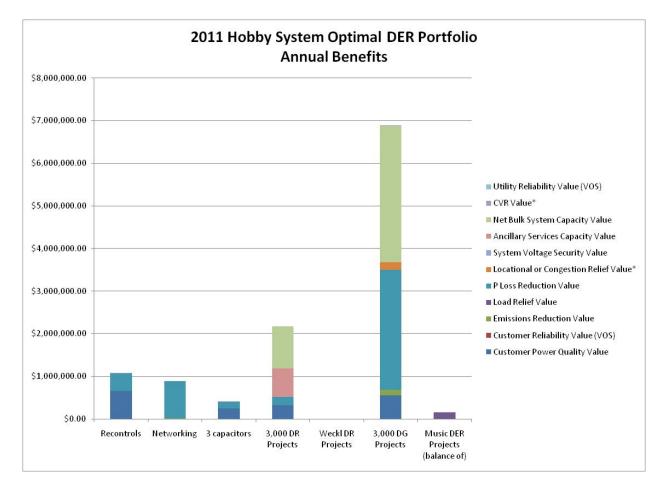
Music Substation DER Projects


- DR:
 - 259 projects, 1.01 MW total
 - 97% residential and small business
- DG:
 - 327 projects, 4.927 MW total
 - 87.7% residential and small business, 12% medium business and ag, 1 industrial
- Onsite load and feeder limits on DG => low penetration!
- After-the-fact assessment of reliability and load relief benefits

Energynet[®]

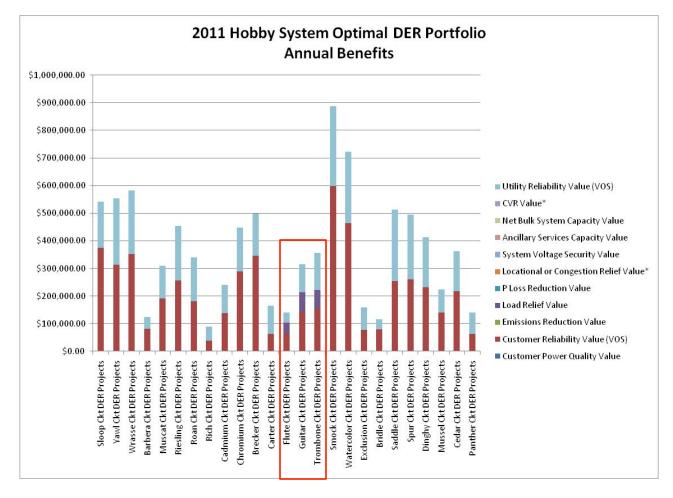
System-wide Optimal DER Portfolio

- DR: 14.93MW, 0.87% of load
- DG: 46.86 MW, 2.75% of load
- Loss reduction: 5.9 MW
- 2.2% increase in system-wide minimum voltage

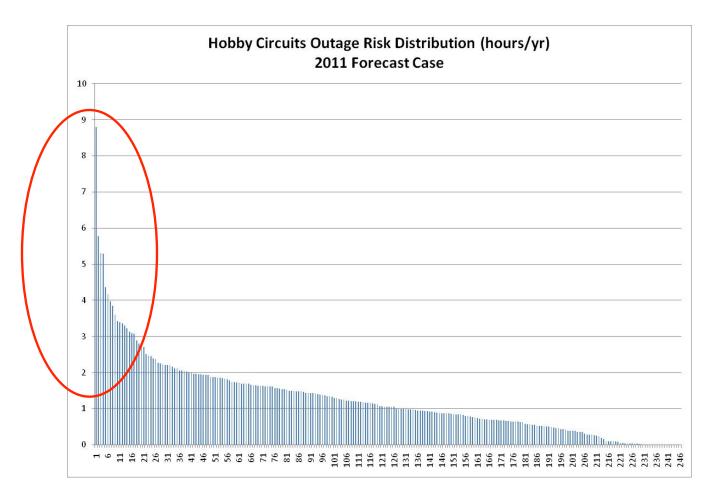

Grid Benefits of Distributed Resources

→ Traditional network expansion project benefits are primarily in load relief

Energynet®


Grid Benefits of Distributed Resources

➔ Non-traditional projects can provide significant value, but in different categories, e.g. capacity, loss reduction and CVR.


Grid Benefits of Distributed Resources

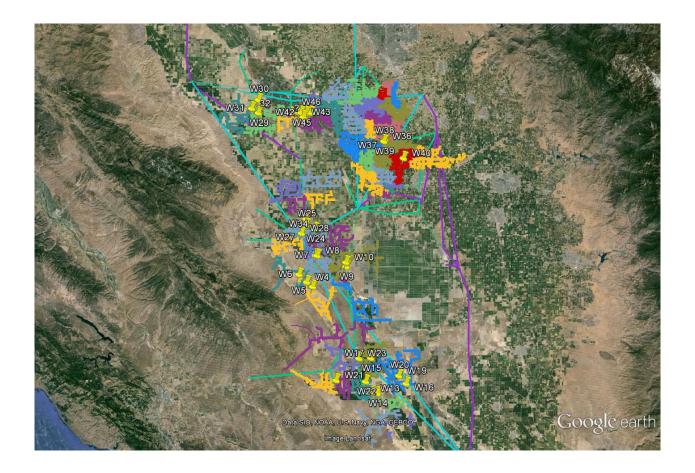
→ Certain DER projects on certain feeders yield significant value, primarily due to reliability improvement.

Energynet[®]

Circuit-level Reliability Assessment

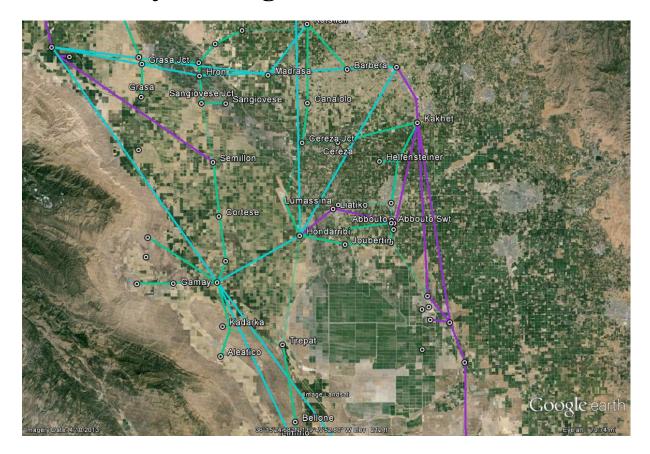
→ Certain feeders are *much* more vulnerable to random contingencies.

Potential DER Benefits

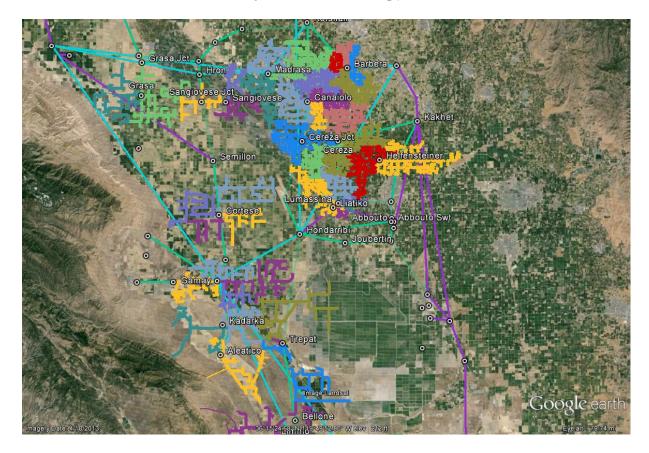

Network Operator Benefits	Customer Benefits
28/yr per customer	
18/yr per customer	
20/yr per customer	\$13/yr per customer
68 per customer/10 yrs	
	\$7/yr per customer
18 20	8/yr per customer 0/yr per customer

Relevant Findings

- DER can benefit power delivery system performance.
- DER project location and attributes matter. A lot.
- These beneficial DER projects can be identified and their benefits quantified and valued.
- Relieving overloads is only one potential benefit category.

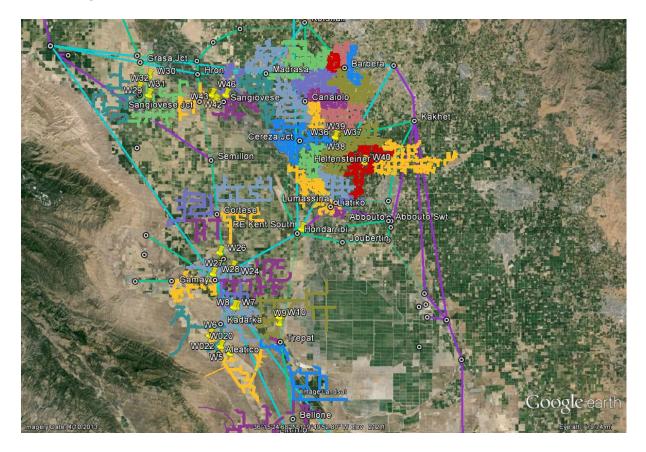

"Vineyard" System *Energynet* DG Evaluation

• DER (PV in this case) at high "penetration" levels



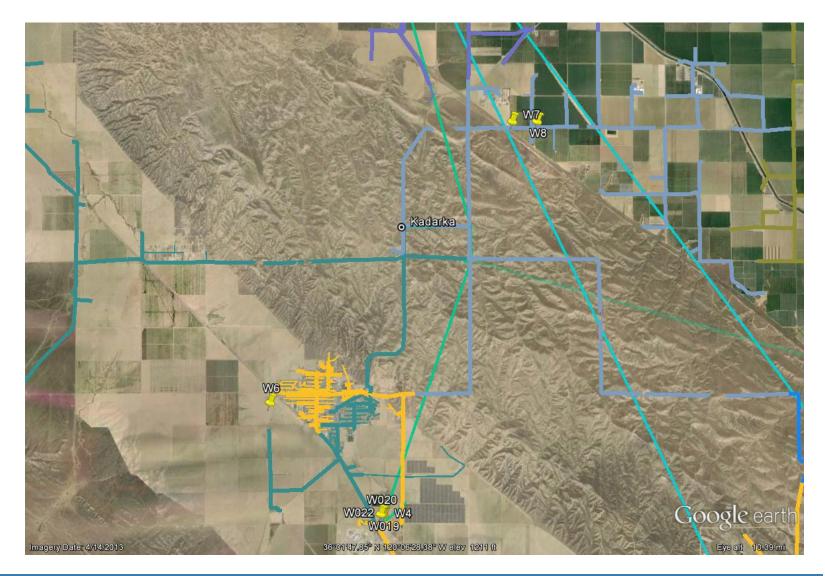
Vineyard Regional Transmission

- 230 kV
- 115 kV
- 70 kV


Vineyard Energynet

- 26 substations
- 51 distribution feeders (12kV and 21 kV)

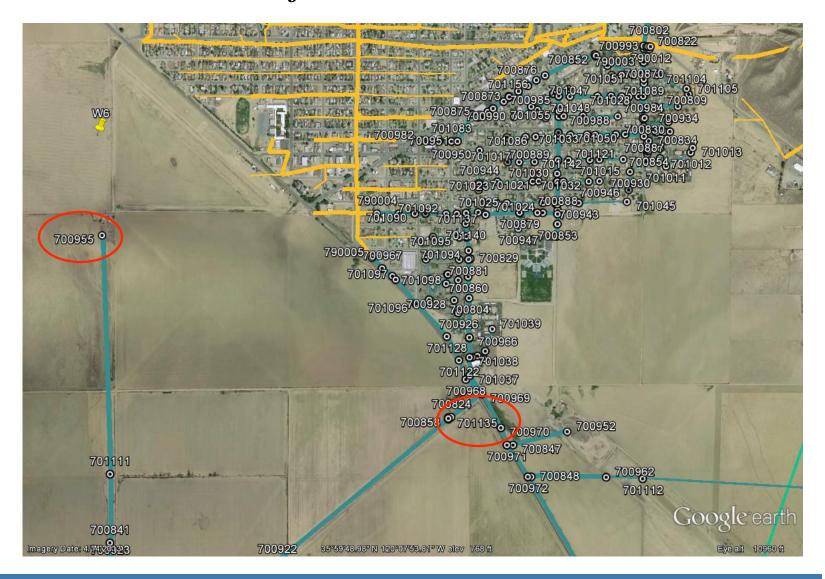
Energynet[®]


Vineyard Wholesale PV Interconnections

- 46 individual distribution-connected wholesale PV projects
- Approx. 80 transmission-connected PV projects

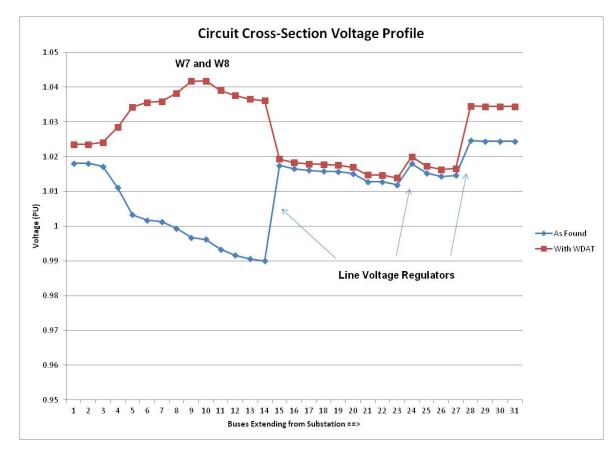
Energynet[®]

Kadarka Substation


Energynet[®]

Kadarka Substation

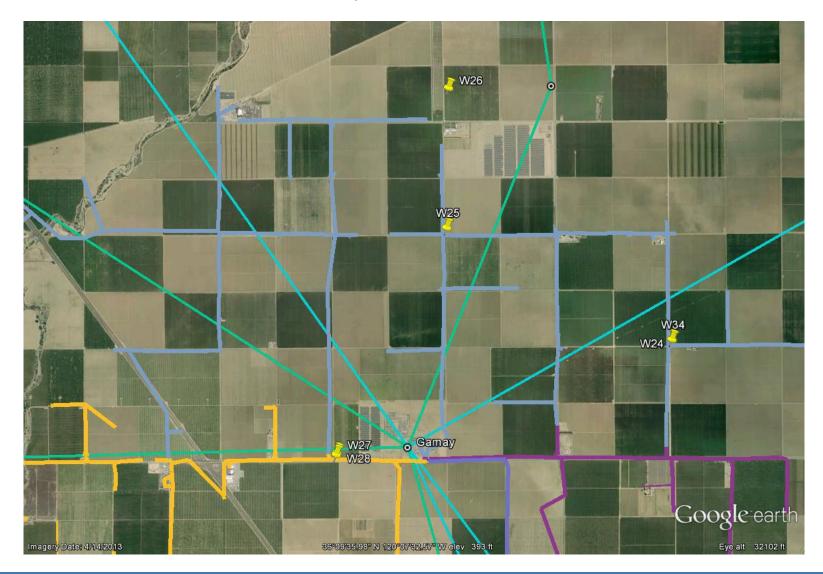
- 70 kV/12kV
- 10.6 MVA transformer rating
- 7.9 MW peak load


DG Project	Size	Share of Substation Transformer Peak Load	Feeder Overload Potential	Maximum Voltage Impact
W7	3 MW	38%	No	2.2%
W8	3 MW	38%	No	2.2%
W6 (@700955)	10 MW	127%	Yes	11.4%
W6 (@701135)	10 MW	127%	Yes	2%

Project W6 Alternates

Energynet[®]

Feeder Voltage Regulation Confines Feeder Steady-state Voltage Impacts


Four projects: Two feeder-connected, two substation-connected; total 46,000 kW

- 4% voltage rise at W7 and W8 projects' point of interconnection in distribution feeder.
- No voltage change at substation or further out feeder.
- Overall "flatter" feeder voltage profile.

As-found With PV projects added

Energynet®

Gamay Substation

Energynet®

Gamay Substation

- 230 kV/12kV
- 44.5 MVA + 17.63 MVA transformer rating
- 20.2 MW + 14.1 MW peak load

DG Project	Size	Share of Substation Transformer Peak Load	Feeder Overload Potential	Maximum Voltage Impact
W28	2 MW	14%	No	0.2%
W27 (alt 1)	$5 \mathrm{MW}$	35%	No	0.5%
W25 (alt)	10 MW	22.5%	No	2%
W26 (alt)	$5 \mathrm{MW}$	11%	No	5.1%
W27 (alt 2)	5 MW	11%	Yes	5.6%

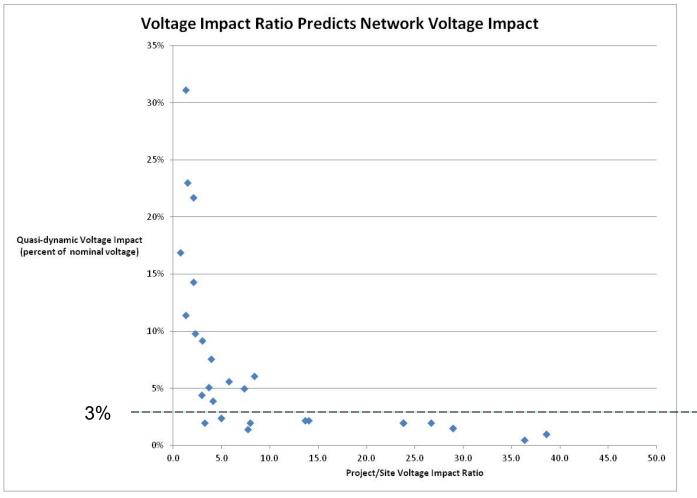
Bonarda Substation

Energynet[®]

Bonarda Substation

- 70 kV/12kV
- 12.5 MVA transformer rating
- 7.0 MW peak load

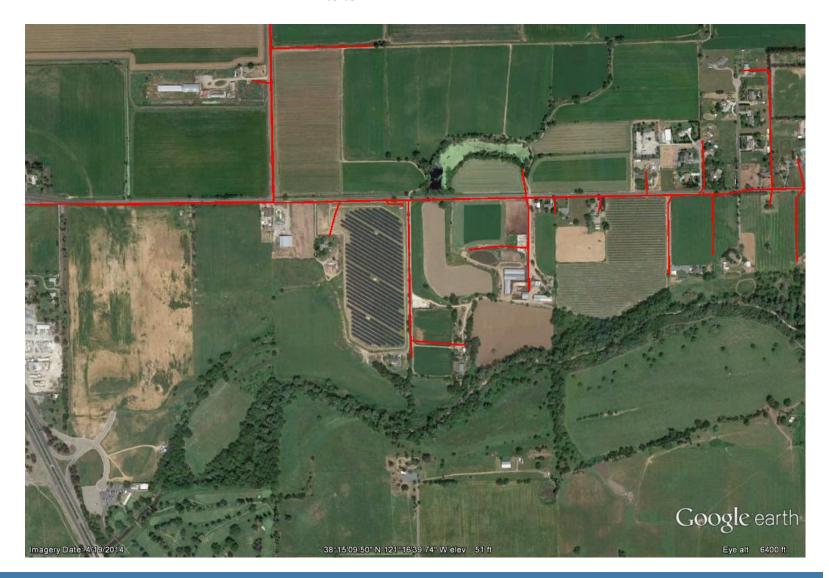
DG Project	Size	Share of Substation Transformer Peak Load	Feeder Overload Potential	Maximum Voltage Impact
W14	12 MW	170%	No	3.9%
W22	10 MW	143%	Yes	23%
W13	12 MW	170%	N/A	1.6%


Energynet[®]

Relevant Findings

- Wholesale PV development can and does result in "penetration" far exceeding 15% of load.
- Feeder export, transformer reverse flow and transmission reverse flow (i.e., local generation *exceeding* local load) are common.
 - Reverse flow may impact the function of certain devices.
- Feeder voltage impacts of variable generation are modest as long as interconnections are not "weak."
- System voltage impacts are damped by distribution feeder voltage management
- Potential for feeder and substation transformer overload under light load or loss of load.
- Fully-coupled distribution and transmission-level modeling permits more accurate representation of system impacts of high-penetration distribution-connected generation.

Energynet[®]


"Stiff" Locations Limit Quasi-dynamic Feeder Voltage Impacts of Variable PV Output

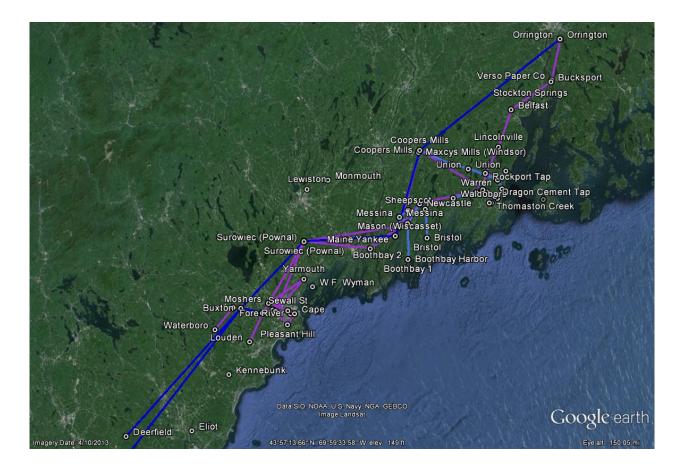
Voltage Impact Ratio = Utility Source SC (MVA) @ PCC ÷ Project Rated Output (MVA)

*Energynet**

DG Site Evaluation App – 3 MW PV on 12 kV Feeder

Energynet[®]

DG Site Evaluation App – 3 MW PV on 12 kV Feeder


💐 New Power Tech - SoftGri 🗙 🔽					_ = X
> C 🗋 localhost/npt/					☆ 〓
New Power Energy No	Technologies GRIDplan DER	logies			
	- Site Information				
		000355			
	Size (Kw): 30	100			
		D : Bus_M181201_ Feature ID : 26000			
		er: 839902	000		
	Circuit Num	oer: M181201			
	Тур	e: UG			
		≥s: 3.0			
		al:#na			
	Sum X Min Rating f	/R: 2.34975230639	2144		
	Ckt Automated Capaci				
	Circuit Min Daytime Lo				
	Non Export Limit H	₩:			
	Substation Co	de : M18TX16912			
	Voltage Impa	ct Ratio : 41.83466	942790821		
	Transformer ID	MVA	LTC Enabled	Reg Bus #	
	M18TX16912	20.0	0		
					Į.
		Get Info			
					•

- > feeder non-export limit
 - Total PV = 119% of feeder connected load
- < min upstream line rating</p>
- 3φ location
- **Feeder voltage regulation**
- Voltage Impact Ratio > 20
- ✓ Max voltage impact: 1%

Site-specific, multi-variable assessment in one click

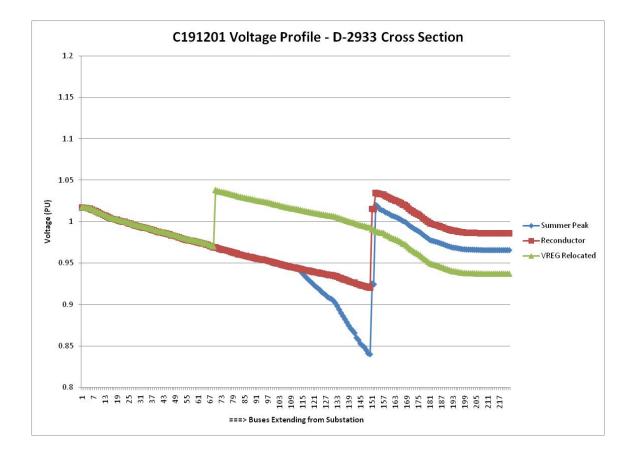
Energynet®

Maine Power System

- 345 kV 34.5 kV
- 115 kV

Energynet[®]

Conclusion


- **DER** can contribute to grid performance.
- Not all DER is grid-beneficial.
 - Location-specific
 - Size and characteristic attribute-specific
 - Operational alignment with grid conditions
- Given identified grid needs, it is possible to rigorously identify the locations and attributes of the most valuable DER and quantify their direct benefits.
- Distribution feeders can accommodate DG as a significant share of load with attention to interconnection sites and network characteristics.
- Under the right circumstances DER can offset network load; it can also provide diversity under contingency conditions and other utility and societal benefits.

Supplemental Slides

Energynet[®]

Project Assessment - C191201 Reconductoring

→ The impacts of individual projects are directly observable.

Energynet[®]

© 2014 NEW POWER TECHNOLOGIES

Wide-area System Monitoring Integration: Turning data into understanding

Trend							_ D ×
Eile View Help Graph Parame	DNA Point Selection - M	uliple Point Return Mo	de			X	
	-						
Data Points	Point Select Multi-Service	Point Select Options					_
Currently Se	- Service Select						
Service N	EDNANPT.NPTUNIV	New Power Tech Univers	al Service	▼ Pri	nt Grid 837/4925	5	
Please ad							
	Data Point Select	,	,				
	ID 100000 LL	DESC	VALUE		STATUS		
	102963_V 1029640P	77C20017 VOLTS 77C20019 OPERATION	122.7	VOLTS N/A	0x0003 0x0003		
	102964_D	77C20019 DEVICE STA		NA NA	0x1043		
	102364_D	77C20019 VOLTS	120.5	VOLTS	0x1043 0x0003		
	1029650P	77C20020 OPERATION		N/A	0x0003		
	102965 D	77C20020 DEVICE STA		NA	0x1003		
	102965_V	77C20020 VOLTS	120	VOLTS	0x0003		
	1029660P	88C20021 OPERATION	949	N/A	0x0803		
	102966_D	88C20021 DEVICE STA	CLOSE	NA	0x1803		
	102966_V	88C20021 VOLTS	120.9	VOLTS	0x0003		
	1029670P	77C20022 OPERATION		N/A	0x0003		
	102967 D	77020022 05/405 974		I MA	0.4042		
,	Display-	*Short	-	earch/Sort			
	🗌 Time 📀	Standard ID/Descrij displayed		Search			
	Status String O	when exte	nded 🗌 🗌	Case Sensitive	Sort on Point ID		
Туре ——	j status stilling to	information unavailabl		Match Exactly	O Sort on Description		
Raw data		unavaliau	e '	indicin Endoly			
	Selected Items - Service.	Point					
Period -					Add		
Hrs: 1					Manual Add		
					Manual Add]]]	
					Remove		
			DK I	Cancel			
Update = OFF							

Existing tabular data without topological cues

Energynet[®]

Wide-area System Monitoring Integration: Strategic augmentation for consistent "density"

- LineTracker[™] monitoring augmentation in Energynet-targeted locations:
 - Enhanced sensing capability (real and reactive power sensing)
 - Legacy communication systems integration (DNP3)
 - Legacy data systems integration
 - Consistent "monitoring density"

Low-cost "Wide Area Situational Awareness" functionality

Source: GridSense

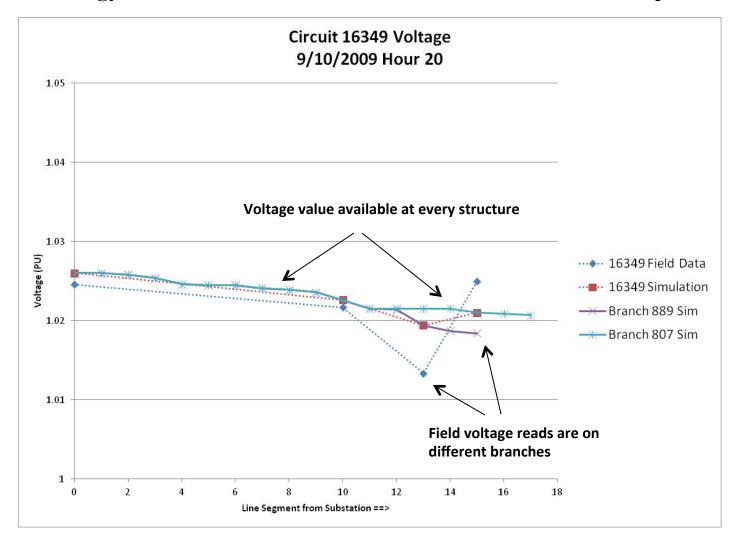
Energynet[®]

Wide-area System Monitoring Integration: Topological context => situational awareness

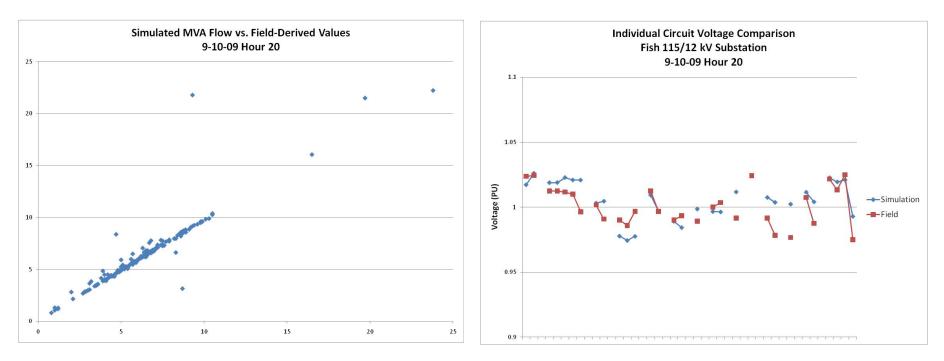
					Search 🕶 More »		Sign In
No	W Dow	on To	shpol	orios			
TAG	w Powe	Vat ^{IM} Tachwa		ogies			
	Linergy	iver rechni	otogies				
DG Site Evaluation	Operation Center	Circuit Power Flow]				
	•						
Sustan D	ate: 09-10-2009 -	Load Data:	09-10-2009 -	Substation Name	507012000 -	Hour: 14:00 -	Show Chart
System Da	ale. 03-10-2003 •	Load Date.	05-10-2003	Substation Ivanie.	507012000	HOUI. 14.00 V	Show chair
		0	Income a Western	Due Chart			
				ge Profile Chart			
1.17	06504 - 12526 -	12907 - 10551	- 18229 - 0	5078 - 04723 - 1	2482		
1.09							
1.08							
1.07							
1.06*			0				
1.05	0	0.0					
1.04	Q	90					
⊇ 1.02							
1.02 1.01 0.99 0.98				0			
D 1-							
🚆 0.99•							
\$ 0.98							
0.97							
0.96							
0.94							
0.93							
0.92							
0.91							
0.9	E 10 1E 20 2E	20 25 40 45		5 70 75 90 OF	0. 05 100 105 11	0 115 120 125 130 135	140
0	5 10 15 20 25	30 30 40 40			50 95 100 105 11	0 113 120 123 130 135	140
			Line	e Segment			

Continuously-read Pi System or eDNA data mapped to Energynet topology

Energynet[®]


Wide-area System Monitoring Integration: Topological context => situational awareness

Google				·	earch • More »		Sign In
Ne	W Pow	or Te	chnol	ories			
Inc	w Pow	Net [™] Techn	ologies	ogics			
			0				
DG Site Evaluation	Operation Center	Circuit Power Flow	1				
						16	
System D	ate: 09-10-2009 -	Load Date:	09-10-2009 -	Substation Name:	507012000 -	Hour: 16:00 -	Show Chart
		0	inanit Volta	ge Profile Chart			
_	06504 - 12526 -				482		
1.1	CODOT ILDEO	10001	10225	0070 00720 1			
1.08				_			
1.07							
1.06							
1.04	0.09	-0					
□ 1.03							
1.02 1.01 1.01 0.99 0.98	0-0						
0 1		000		0			
A 0.99							
9 0.98 0.97							
0.96							
0.95							
0.94							
0.92							
0.91							
0.94	5 10 15 20 25	30 35 40 45	50 55 60 6	5 70 75 80 85 9	0 95 100 105 11	0 115 120 125 130 135	140
				e Segment			
			Lin	ginone			


Continuously-read Pi System or eDNA data mapped to Energynet topology

Energynet[®]

Wide-area System Monitoring Integration: *Energynet* **simulation => device level visibility**

Energynet Simulation a Validated Predictor of Actual System Conditions

- Simulation voltage results within 2% of field data reads at \sim 650 widely-dispersed locations
- Area model produced from raw data in one month
- Area model updated in one day using secure web file transfer

*Energynet**

Energynet **Deployments**

• SMUD

- > 750 feeder systemwide commercial deployment (competitive award)
- DG siting, EV charging, GRIDplan DER apps
- Elk Grove #1 system (competitive commercial pilot, 2010)

• PG&E

- "Vineyard" system (51 feeder integrated T&D simulation)
- Regional impacts of high PV penetration (CEC)
- 5 circuits; high EV penetration area (LAHFT)
- EV Charging app (2012)

Southern California Edison

- "Hobby" system (246 feeder integrated T&D simulation)
- "Mountain" system (190 feeder integrated T&D simulation)
- Full-scale demonstration; simulation validation (2004-2009)
- Legacy sensors for a wide-are monitoring network and situational awareness
- DG siting app (2010)

• Silicon Valley Power

- 48 feeder integrated T&D simulation; proof of concept demonstration (2003-2005)

References

- 1. Regional/Transmission & Distribution Network Impacts Assessment for High-Penetration Wholesale PV, Evans, P. (New Power Technologies), CEC-500-2014-xxx (unpublished); 2014.
- 2. Integrated Transmission and Distribution Model for Assessment of Distributed Wholesale Photovoltaic Generation, Evans, P. (New Power Technologies; California Energy Commission, CEC-500-2013-003; 2013. http://www.energy.ca.gov/2013publications/CEC-200-2013-003/CEC-200-2013-003.pdf
- 3. Verification of Energynet® Methodology, Evans, P.; California Energy Commission, CEC-500-2010-021; 2010. http://www.energy.ca.gov/2010publications/CEC-500-2010-021/CEC-500-2010-021.PDF
- 4. Optimal Portfolio Methodology for Assessing Distributed Energy Resources for the Energynet; Evans, P., California Energy Commission, CEC-500-2005-096; 2005. http://www.energy.ca.gov/pier/project_reports/CEC-500-2005-096.html

Notices

This report does not necessarily represent the views of the California Energy Commission, its employees, or the State of California. The Energy Commission, the State of California, its employees, contractors, and subcontractors make no warranty, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the Energy Commission nor has the Energy Commission passed upon the accuracy or adequacy of the information in this report.

"Energynet", "high definition" power system model, and "passive interoperability" are trademarks or registered trademarks of New Power Technologies. All other trademarks and trade names used herein are the property of their respective trademark holders.

The Energynet platform and its applications are protected under US Patent No.s 7,860,702 and 7,398,194 and patents pending.

About...

New Power Technologies is dedicated to moving advanced energy technologies from theory to practical application. The company's *Energynet*® technologies enable power delivery network analysis and management with unprecedented transparency, precision, and ease of integration to support high-performance and high-efficiency network operation and planning.

Contact:

peterevans@newpowertech.com (650) 948-4546 www.newpowertech.com

